December 2

Piano Tuning Theory – Preorder and Save!

Tuning Pianos

3  comments

Pre-Order HERE

90% of this book is standard theory that all technicians learn when they begin their studies, but some of the theory has been developed by data that the author has collected.

(The following example may be of interest to tuners who enjoy using beat speeds to check octave sizes. The author is aware that many technicians do not favour octave checks and prefer to tune octaves directly. This discussion, therefore, may not be of interest to them.)

Example: Tuning pure 4:2 or wide 4:2/narrow 6:3 octaves.

This has been a question that has been debated and there are advocates for both.

The author performed a study that may help one determine when to tune a pure 4:2 and when to tune a wide 4:2/narrow 6:3.

The study used the concept of Octave Spread.

Octave Spread has been defined by the author, as how "out of tune" the 6:3 partials are, when an octave is tuned as a pure 4:2. On some pianos, the 6:3 partials are very close. On other pianos, they are very far apart.

The author has defined the following categories:

Small Octave Spread: 0.0 - 0.5 cents

Medium Octave Spread: 0.5 - 1.0 cents

Large Octave Spread: 1.0+ cents

(The cents value indicates how far apart the 6:3 partials are in an octave when it is tuned as a pure 4:2.)

When using the standard octave checks, there is a window where unequal beat speeds will "sound" equal to the tuner. This is defined by the author as The Human Limitation in Beat Speed Difference Recognition.

From tests with subjects, this limitation has been found to be about 3%. It does not depend on tuning experience.

This 3% window is very close to the 0.0 - 0.5 cent bin for the Small Octave Spread.

So, even if an octave is a wide 4:2/narrow 6:3, but also has a Small Octave Spread, it will "sound" like a pure 4:2/pure 6:3, when using the standard octave tests.

When tuning wide 4:2/narrow 6:3 (when the spread is wide enough to be heard using the standard octave tests) there is a limit when subjects indicate that the octave does not sound "clean". This limit is equal to a spread of about 1.0 cents.

If an octave has a spread of approximately more than 1.0 cents, it sounds better as a pure 4:2, which has a very narrow and wildly beating 6:3, according to subjects' responses.

The attached flow chart may be used to aurally assess the spread (which is an indication of the inharmonicity of the piano) and possibly determine the best octave size.

(The author uses "Octave Spread" and "Octave Scale" interchangeably.)

*In some cases, the octave will not tune as a pure 4:2/pure 6:3, will not sound good as a wide 4:2/narrow 6:3, and will not sound good as a pure 4:2. Sometimes, tuning it as a pure 2:1 will work. Sometimes, it may sound good as a narrow 4:2/wide 6:3, if it can be tuned as such. Rarely, the octave may have to be tuned directly, without check notes.

About the author 

Mark Cerisano, RPT, B.Sc.(Mech.Eng.)

Instructor and Founder, howtotunepianos.com

You may also like

Setting F3-A3

Beginning technicians are often advised to initially set F3-A3 to 7 beats per second (bps). Mathematically F3-A3 = 6.9 bps in equal temperament so it’s a good guess.After using the skeleton or contiguous M3’s also known as Jack’s Stack, we can refine F3-A3 to be more what the piano needs, but 7 bps is a

Read More

How to Regulate a Piano!

I often read questions on piano technician forums from technicians asking how to regulate a specific piano. For example, recently someone posted this.“I’m regulating a piano and the book says to regulate blow distance at 1.5 inches”or“I can’t find any regulation specs for this specific piano in any books” The writing of these books implies

Read More

Analysis of a Unison – Before and After

When a string is played, it vibrates in different modes. It can vibrate in one section, two sections, three sections, etc. These modes are called partials or harmonics. The following graphic shows how the harmonics relate above the note A4.When two or more strings are tuned together, all of their partials must have the same frequency

Read More