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This paper deals with the normal modes of vibration of a stiff piano string. The equations that govern the 
vibration of a solid string are developed along traditional lines. They are modified to apply to strings having a 
solid-steel core upon which are wrapped one or two copper windings. The bass strings of most pianos are made 
this way. Two boundary conditions are considered: namely, (1) pinned by sharp knife edges at both ends 
and (2) clamped at both ends. Formulas for the partial frequencies for both of these conditions are developed. 
The partial frequencies that are calculated by these formulas are compared to the experimental values 
obtained on an upright Hamilton piano. The experimental values appear to agree somewhat better with 
the pinned boundary condition rather than the clamped boundary condition, although the differences are 
not much greater than the observational error. It was found that the formula f,,=nf•[(lq-Bn2)/(lq-B)• 
gives values of the partial frequencies that agree with the experimental ones where n is the number of the 
partial, f the fundamental frequency, and B a constant that can be calculated from the dimensions of the wire. 

SUALLY, the frequencies of the partials of a piano 
tone are considered to be harmonic, that is, integer 

multiples of the fundamental frequency. Many college 
courses in physics still treat piano strings as having no 
stiffness, and this leads to the conclusion that the par- 
tials are harmonic. 

For nearly one hundred years, this has been known 
to be only approximately true and a poor approximation 
for the bass strings. For some of these strings, the 40th 
or 50th partial may depart from the corresponding 
harmonic by as much as two full-tones sharp. This 
paper reviews the theoretical aspects of the problem of 
solid strings and modifies the equations so that they will 
apply to the wrapped strings in the bass section. 

Lord Rayleigh, 1 Seebeck, and Donkin 2 worked on 
this problem seventy-five or eighty years ago. More 
recently, Morse, • Shankland, 4 Schuck, 5 Young6. 7 and 
others s-ll have made contributions, but there seems to 

•Lord Rayleigh, The Theory of Sound (MacMillan !and Co. 
Ltd., London, 1894), Vol. 1, pp. 298-301. 

•' W. F. Donkin, Acoustics (Clarendon Press, Oxford, England, 
1884), 2nd ed., p. 187. 

3 p.M. Morse, Vibration and Sound (McGraw-Hill Book Co., 
Inc., New York, 1948), 2nd ed., pp. 127-131. 

4 R. S. Shankland and J. W. Coltman, J. Acoust. Soc. Am. 10, 
161-166 (1939). 

50. H. Schuck and R. W. Young, J. Acoust. Soc. Am. 15, 1-11 
(1943). 

6 R. W. Young, J. Acoust. Soc. Am. 24, 267-273 (1952). 
7 R. W. Young, Acustica 4, 259-262 (1954). 
8 W. E. Kock, J. Acoust. Soc. Am. 8, 227-233 (1937). 
9 Franklin Miller, Jr., J. Acoust. Soc. Am. 21, 318-322 (1949). 
•0 Otto Schaefer, Ann. Phys. 62, 156-164 (1920). 
• G. E. Allan, Phil. Mag. 4, 1324-1337 (1937). 

be no complete coverage of both the theoretical and ex- 
perimental aspects of this problem in a single publica- 
tion. This paper tries to do this, and adds some addi- 
tional material on wrapped strings. 

When a piano string is displaced a distance y at the 
position x, the restoring force due to the tension T is 
known to be 

It is not so well-known, although it was given by 
Lord Rayleigh • more than eighty-five years ago, that 
the restoring force due to the elastic stiffness is 

--QSKS(b4y/bx4), 

where Q is Young's modulus of elasticity, S the area of 
cross section of the wire, and K its radius of gyration. 

Let v be the linear density and t the time. Then, the 
equation governing the motion of the piano string is 

-QSKSQS4y/•Sx4)+ T(•5Sy/•SxS)=v(•5•y/•SxS). (1) 

This is the form of the equation originally set up by 
Lord Rayleigh. 

A frictional term of the form 

R(ay/at), 

should be introduced on the left-hand side of this equa- 
tion. However, for the piano strings as they are now 
made and used, this term produces only a very small 
effect upon the values of the partial frequencies. As its 
introduction makes the solution of Eq. (1) much more 

2O3 
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204 HARVEY FLETCHER 

complicated, it is not considered here. But it must be 
remembered that it is the principal term that measures 
the decay of the vibration of the string after it has been 
struck. 

Let l be the length of the string between its supports 
and d its diameter. It is convenient to make the follow- 

ing substitutions' 

B = (r2QSK•'/TI2), (2) 

f0 = (1/2l)(r/a)L (3) 

For a string that has no stiffness and negligible fric- 
tional retarding force, the value of f0 is the fundamental 
vibration of such a string. As we shall see, it is a close 
approximation to the fundamental vibration of actual 
piano strings. If the string is driven by an external 
periodic force, then f0 is exactly the resonance frequency 
for a string having no stiffness. 

To solve Eq. (1), one assumes y is a sum of terms of 
the form 

y= Ce•kxe -2•js t, (4) 

where C, k, and f are constants to be determined from 
Eq. (1) and the boundary and initial conditions. If the 
value of y from (4) is substituted in (1), the following 
equation results' 

k 4- (1/4Bl2)k • (f•'/16Bl•o•)=O. (5) 

This shows that for any possible frequency f there are 
four possible values of k as follows: 

and 

k=q-k• where k• •=8Bl-/s[(l+4Bff•lq-11, (6) fo"/ 

k= q-jk•. where k•? 8B1-/2[(1 fo • / 

It will be noted that k• and k• are related as follows' 

k• 2- k•.•= (1/4BF). (8) 

The general solution of Eq. (1) is then 

y= e-J•'•St(K• cosh2rk•xq-Ka cos2rk•x 
q-K• sin2rk•xq-K4 sin2rk2x). (9) 

All these relations are independent of the boundary 
conditions. So, for every possible value of k•, there is a 
corresponding k• obtained from Eq. (8) and a corre- 
sponding value of f obtained from Eq. (5). If we choose 
the origin of the x axis at the center of the piano string, 
then one end will be at l/2 and the other at -l/2, and 
the boundary conditions will be syrmnetrical. Then, the 
even functions are built from the first two terms of 

Eq. (9) and the odd functions from the last two terms. 
For both of these, if the boundary conditions fit at l/2 
they will also fit at --l/2. 

PINNED BOUNDARY CONDITION 

If both ends are pinned by knife edges, then 
y=$2y/$x2=O at x=l/2 and -l/2. If we use only the 
even functions, that is, take K•. and K4 equal to zero, 
these boundary conditions will fit if K•-0 and cos•rk/ 
=0; that is, 

•=•/2t, (•0) 

where n can be 1, 3, 5, 7, or any odd integer. 
For each of these values of k, there is a corresponding 

frequency f of the odd partials obtained from Eq. (5) as 

f ,,=nfo(l+Bn•) •. (11) 

For these frequencies, 

y= Ka cos (•rnx/l) cos2•rf•t, (12) 

where Ka takes on a different value for each odd partial 
and is determined by the amplitude of that partial. 

If we use only the odd functions, then K•, K•, and Ka 
are zero and simrk/=0, or 

k = (n/2/), (10A) 

where n-2, 4, 6, or any even integer. 
The frequencies corresponding to these values of k 

are also given by Eq. (11), and the values of y are 

y= Ka sin(rnx/l) cos2rf nt, (13) 

where K4 takes a different value for each even partial 
and is determined by the amplitude of that partial. 

CLAMPED BOUNDARY CONDITIONS 

For the case when the two ends are clamped, the 
solution is more complicated. The boundary conditions 
at x-l/2 are y=O-$y/$x. Applying these two condi- 
tions to the even functions gives 

K• cosh(rkd)=--Ka cos(rk•/) 
and 

K•k• sinh (rk•l)= Kak• sin (rkd). 

Dividing one equation by the other gives, for the 
condition for determining the values of k•. from the 
even functions, 

-tanh(rkd)= (k2/k•) tan(rk•/). (14) 

Similarly, applying the boundary conditions to the 
odd functions, 

tanh(rkd)= (k•/k•) tan(rkd). (15) 

If the value of k• from Eq. (8) is substituted in Eqs. 
(14) and (15), the allowed values of k•. for both the odd 
and the even functions can be obtained by numerical 
solution. These allowed values of k•. can then be sub- 
substituted in Eq. (6) to obtain the values of the normal 
frequencies fn as 

f ,,= 2k•.fo(l+4B•k•') •. (16) 
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STIFF PIANO STRING 205 

An approximate formula for k•. in terms of the con- 
stants of the string can be obtained as follows. From the 
previous analysis, one should expect that the value of 
k,. would be close to n/21. So 

k•.=n/21(l+e), (17) 

where e is a small quantity as compared to unity. The 
equations for determining e are now derived. Since k•. 
is approximately equal to n/21, the quantity k•l• is ap- 
proximately equal to r/2[n2+(1/B)• «. The smallest 
value of this quantity will be when n-1 and B is the 
largest value found in piano strings. The largest experi- 
mental value of B was found to be 0.024 for the highest 
note on the piano. This gives for rk•l a value of 10. 
Therefore, the quantity tanh(rkd) can always be taken 
as unity. Then, Eq. (14) reduces to 

n(rne -tanrk2/- -ta x,-•-+•-/ 
•rn, [-k2•+ (1/4B •)• 

= cot = . (18) 
2 k• 

If n/21(l+e) is substituted for k•. and 1/•rne for 
cot me/2, the following equation in e is obtained' 

•(rne)•'/2•{•(rne)3/2•Bn•(l+e)2}=Bn•(l+e) •. (19) 

If higher powers of e greater than e • are neglected, the 
solution of (19) is 

e= (2/•r)B•h- (4/•r2)B. (20) 

If this value of e is substituted in Eq. (16) and terms 
containing B to powers greater than unity are neglected, 
then 

f n=nfo[14r- (2/r)B•+ (4/r2)B•(l+Bn•)•. (21) 

This shows that clamping the ends, instead of pinning 
them, increases the partial frequencies by the factor 

+ 

Equation (21) can be written 

f•=nfo{l+(4/r)B,•+•(12/•r•)+n•'•B}•, (22) 

which is the formula first deduced by Seebeck2 
If we start with Eq. (21) and retain only the square- 

root expansion, then this equation reduces to 

f•=nf o{ 1+ (2/r)B«+[(4/r2)+ (n•'/2)•B}. (23) 

This is the formula given by Morse a in his book. 
This was deduced for the even functions where n= 1, 

3, 5, 7, etc. For the odd functions n= 2, 4, 6, 8, etc., 
Eq. (15) reduces to 

tan(rk•l)=k•/k•). 

Again, let k•= (n/21)(1-l-e). Then, 

tan (rk•.l) = tan (•rne/2) = k2/k•, 

when n is an even integer. This equation is the same as 
Eq. (18). Therefore, the above equations hold for n 
being any integer, either even or odd. 

An examination of the supports for the wires in a 
piano shows that the boundary condition lies some- 
where between the two conditions treated above. In 

general, for either boundary conditions, one sees that 

f n= nF (1-l-Bn•) «, (24) 

where F and B are two constants that can be obtained 

from an accurate measurement of the frequencies of 
any two partials. The frequency of all the other partials 
can be obtained from Eq. (24). 

If fn is the frequency of the nth partial and fm the 
frequency of the mth partial, then it follows from Eq. 
(24) that 

• (m/n) f•2_ • (n/m) fm•2 
, (2S) 

m •-- n 2 

(rm/n)•--I 
B = (26) 

n 2-- (rm/n)•m2' 

where r is the ratio of the frequency of the nth partial 
to the frequency of the mth partial. 

The value off0 is between the value of F and F divided 
by 

1 h- (2/•r)B•h- (4/•r2)B. 

Since B depends upon fo, there will be two calculated 
values of B corresponding to the two boundary 
conditions. 

COMPARISON OF CALCULATED AND EXPERIMENTAL 
VALUES FOR B FOR SOLID PIANO WIRES 

It will be seen from Eqs. (2) and (3) that the calculated 
value of B is given by 

B = •r•QSK•/414•f oh (27) 

Solid piano strings are round and made of steel. If we 
use cgs units for all numerical work, then the volume 
density of steel is 7.7, the value of Q=19.5X10 u, 

S=rd•/4, K=d/4, and •= 7.7S. 

Therefore, 
B= 3.95 X 101ø (d•//•f02). (27a) 

The values of d and I can be measured directly on an 
installed piano string, but the value of f0 must be ob- 
tained from the fundamental frequency f• of the string. 
The relationship between f• and f0 is different for the 
two boundary conditions considered. The value of f• is 
the same under each of the boundary conditions. 

Let f• represent f0, calculated from f• with pinned 
boundary conditions, and fc the corresponding value 
for the clamped condition. Also, let B• and Bc be the 
corresponding calculated values of B from Eq. (27a). 
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206 HARVEY FLETCHER 

For the fundamental frequency, n= 1 so 

f•=f•,(l+B•,)•, (28) 
and 

fl=fc[-1-t -- (2/r)Bj+ (4/r)Bc•](l+ •)-. (28a) 

All of the quantities in Eq. (28), except f0, are the same 
for both boundary conditions. Therefore, 

=[-1+ (4/r)B•+ (12/x•)B•[(l+B•)/(i+B•)•. (28b) 

Since the values of B• and B• range from 0.01 to 
0.0001 and are never far apart, it is safe to put the last 
factor equal to unity. Also, the third term is usually 
negligible. For example, for notes below high C, the 
value of B is less than 0.01, and so the last term is 
always 500 or more times the second term. Therefore, 

B,= [1 + (4/r)Bfi•B•. (28c) 

The values of f• can be obtained arbitrarily from a 
table or calculated from the equation 

f•= 27.5 X 2 (•-•)/•, (29) 

where N is the number of the key starting with the first 
key on the left side of the keyboard as number 1 and the 
last key on the right as number 88. 

The piano used for this comparison was a Hamilton 
upright with key system 763. The dimensions of the 
wires are given in Table I for the solid strings, starting 
with key No. 31. The values of B calculated from Eq. 
(28b) are given by the solid points in Fig. 1. The sudden 
breaks in the curve are due to sudden changes in the 
gauge of the piano wire as shown by underlines in 
Table I. The one exception to this is from key No. 58 
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Fro. 1. Values of B in Hamilton upright piano (new model). 

to No. 59. The jump in the value of B at this point is 
due to a change in the frame that supports the wires, 
thus producing a sudden large change in the length of 
the wire. 

To find experimentally the values of B of this piano, 
one must find the frequencies of the partial tones. A 
method of doing this was described in our paper, "The 
Quality of Piano Tones. 'n2 This method was refined by 
obtaining a better analyzer with a passband only 4 cps 
wide. Another change was to pluck the string instead of 
hitting the key in the usual manner. This intensified the 
higher partials and, therefore, made it possible to ob- 
tain a greater accuracy in the measurement of their 
frequencies. The three strings corresponding to a single 
key in the upper register of the piano were not exactly 

TA•3•.•. I. Dimensions of solid strings in Hamilton upright 
piano (new model). 

Key Key Key 
No. d(cm) l(cm) No. d(cm) l(cm) No. d(cm) l(cm) 
31 0.119 86.1 51 0.094 40.0 71 0.085 13.65 
32 0.119 83.6 52 0.094 38.1 72 0.085 12.95 
33 0.119 81.1 53 0.094 36.4 73 0.084 12.25 
34 0.119 78.5 54 0.094 34.6 74 0.084 11.55 
35 0.114 76.0 55 0.094 33.0 75 0.084 10.88 
36 0.114 73.4 56 0.094 31.4 76 0.084 10.24 
37 0.114 70.8 57 0.094 29.8 77 0.084 9.63 
38 0.114 68.4 58 0.094 28.3 78 0.084 9.15 
39 0.109 65.3 59 0.094 23.8 79 0.084 8.60 
40 0.109 63.2 60 0.094 22.8 80 0.084 8.08 
41 0.109 60.7 61 0.094 21.9 81 0.079 7.59 
42 0.109 58.2 62 0.094 21.0 82 0.079 7.13 

43 0.104 55.8 63 0.094 20.1 83 0.079 6.77 
44 0.104 53.5 64 0.094 19.1 84 0.079 6.36 
45 0.104 51.4 65 0.085 18.3 85 0.079 5.97 
46 0.104 49.4 66 0.085 17.5 86 0.079 5.60 
47 0.099 47.4 67 0.085 16.7 67 0.079 5.25 
48 0.099 45.3 68 0.085 15.9 88 0.079 4.90 
49 0.099 43.6 69 0.085 15.05 

50 0.099 41.7 70 0.085 14.35 

in tune. In Table II are given the three frequencies as 
measured by a Stroboconn. For example, the frequency 
of the tenth partial of one of the G' wires is more than 
twenty-three cps above one of the others. For this 
reason, it was difficult to identify the partial unless only 
one string was vibrating. 

A third method, which gave a greater accuracy than 
either of the two mentioned above, is now described. 
An alternating magnetic driving force was produced by 
a small magnetic driving coil. When the frequency of the 
driving force was equal to one of the partial frequencies, 
a maximum sound was produced by the string vibrating 
in the mode corresponding to this frequency. A small 
microphone was placed near the string, which picked 

•" H. Fletcher, E. D. Blackham, and R. Stratton, "Quality of 
Piano Tones," J. Acoust. Soc. Am. 34, 749 (1962). 
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STIFF PIANO STRING 207 

up the sound. The corresponding electrical current was 
sent to a voltmeter. The frequency was varied until the 
voltmeter read a maximum. This frequency was then 
measured either on the Stroboconn or an electronic 

counter. The former was used for the low frequencies 
and the latter for the high frequencies. 

Typical results obtained by this last method are 
shown in Tables III and IV. The method of making the 
calculations of F and B from these data is also indicated 

in these tables. For all solid strings in this piano, the 
values of Bn 2 are always so small that Eq. (24) can be 
written 

f,,--nF=BFn3/2. (248) 

If we designate f,•--nF as zXf, then it is seen that 

B= (2/F)(zXf/n3). (26b) 

For calculating F and B from such data as those in 
Tables III and IV, it is convenient to choose the two 
partials such that m= 2n, in which case Eqs. (25) and 

TA•3Lv. II. Frequencies of the three strings associated with one key. 

A# 477.9 474.3 474.9 
G 403.5 402.1 401.2 
D 570.6 570.6 566.0 
F# 717.3 713.1 712.7 
G 765.2 765.6 763.2 
C 1018.5 1020.8 1019.1 
F 1350.1 1343.1 1334.6 
D 2251.0 2253.6 2245.8 

(26) reduce to 

F= (8f,•--f2,•)/6n, 

B= (2/n•)• (r-- 2)/(8--r)•. 

(258) 

(268) 

TA•3Lv. III. Observations and calculations for key No. 31. 

n obs f,, Af/n a 

1 152.6 
2 305.8 0.• 
3 459.2 0.030 
4 613.0 0.0281 
5 767.9 0.0312 
6 924.3 0.0346 
7 1080.9 0.0328 
8 1240.2 0.0346 
9 1399.7 0.0335 

10 1561.7 0.0337 
11 1725.8 0.0338 
12 1891.8 0.0337 
13 2060.0 0.0335 
14 2230.3 0.0332 
15 2405.0 0.0334 
16 2574.0 0.0318 
17 2744.0 0.0297 
20 3317.0 0.0327 

Calculation of F and B 

n F B 

1 and 2 152.50 0.0013 
2 and 4 152.62 0.00082 
3 and 6 152.74 0.00058 
4 and 8 152.66 0.00048 
5 and 10 152.77 0.00045 
6 and 12 152.85 0.00043 
7 and 14 152.78 0.00043 
8 and 16 153.07 0.00045 

10 and 20 152.94 0.00053 

Average 152.8 0.000448 

Average zXf /na=O.0337 
Corresponding B-0.000441 
Final B =0.000444 

TABLE IV. Observations and calculations for key No. 59. 

These equations make the calculations more simple. 
For example, in Table III, the number n of the partial 
is given in Column 1, and the corresponding observed 
frequency in column 2. In column 3, the values of zXf/n • 
are given. It is seen that these values are very nearly 
the same for partials from 4 to 17. For the lower 
partials, an observational error of 0.2 or 0.3 cps will 
account for the variation. For the partials higher than 
16, the intensity level is so low that the ability to pick 
up the partial in the background noise becomes much 
more difficult and, hence, a large observational error 
results. So only values corresponding to n=4 to n= 16 
were used in the average values shown. The data in 
Table IV were similarly treated. 

In this way, the experimental values of B were ob- 
tained, which are shown by the circles in Fig. 1. It is 
seen that they agree very well with the calculated 
values. These calculations are for the pinned boundary 
condition. The difference between By and Bc is not 
much greater than the observational error, being 10% 
for the highest key No. 78 and less than 4% for the 

n obs. f,, &fin a 

1 777.2 O.5O 
2 1558.1 O.59 
3 2348.0 0.66 
4 3148.7 O.66 
5 3966.0 0.66 
6 4800.0 0.65 
7 5647.0 0.61 
8 6544.0 0.65 
9 7451.0 0.64 

Calculation of F and B 

n F B 

1 and 2 776.6 0.00160 
2 and 4 776.4 0.00175 
3 and 6 776.9 0.00166 
4 and 8 776.9 0.00166 

Average 776.7 0.00167 

Average/Xf/na=0.650 
Corresponding B -- 0.000167 
Final B-0.000167 
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keys below No. 58. The data seem to indicate that the 
pinned condition is the one that governs, although the 
evidence is not conclusive. It also shows that Eq. (28b), 
with the numerical constant shown, will give accurate 
values of B for the piano wires used on this piano. It 
is our understanding that these same wires are used 
generally for pianos. 

Having the values of B, one can calculate all the 
partial frequencies from the equation 

f'•=[f'/(l+•)l(n+•a ), (24b) 

where fx is the fundamental frequency. 

PIANO STRINGS WITH STEEL CORE WOUND 
WITH COPPER WIRE 

The first 30 keys are associated with wound wires, 
some with one and some with two copper windings. 
Therefore, the above equations cannot be applied with- 
out modification. If these cases, the elastic-restoring 
torque is due almost entirely to the steel core, but the 
linear density is due to the core and the windings. Let 
us first consider the linear density. 

Determination of the Linear Density 

Let d be the diameter of the steel core and D the 

diameter of the string including the winding. If the 
copper winding were a sheaf, its cross-sectional area 
would be 

If it were a round wire, its cross section would be reduced 
by •r/4 of this value. By use of the volume density of 
steel as 7.7 and of copper as 8.8, the value of the linear 
density of the wound string (in cgs units) is then 

Experimental Determination of QSK 2 

It is known that a rod of length l clamped tightly at 
one end has a period of vibration of T sec, such that 

QSK•= 3.19 (14tr/ T2). (31) 

It is also known that such a bar will be deflected a 

distance y by a weight w that is hung l centimeters 
from the support if 

QSK•= « (980w13/y). (32) 

For the A'"' string, the first bass string on the piano, 
v=2.08 gm/cm. Vibration tests gave the following 
results: 

/=34.5 cm, T=0.477 sec, so, QSK•=4.1X107; 

/=43.0cm, T=0.755sec, so, QSK•=4.0XlOL 

Deflection tests gave the following results' 

l=10.85 cm, y/w=O.01035, so, QSK•=4.0XlO*; 

l=11.9 cm, y/w=O.0135, so, QSK•=4.1X 

Deflection measurements upon the core alone gave 
the value QSK=3.84XlOL A value calculated for a 
steel wire of diameter 0.141 cm from Eq. (28) is 3.80 
X 10L This indicates that the measured value of QSK • 
only about 7% higher than that for the core alone. A 
solid steel wire of the same size would have a value 38 

times larger than the one given above. 
Similar deflection measurements that were made on 

the G'" string gave a value of QSK•=2.4XlOL For 
the core alone, such measurements gave a value of 
2.30X 10 7, which may be compared to a value calculated 
for d=0.124 cm of 2.27X10L This indicates that the 

G'" string has a value of QSK • that is only about 5% 
higher than its core. Similar deflection measurements of 
the G" string yielded QSK•=O.99XlO * and for the 
core alone a value of 0.96X 107. 

•= 5.43D •- 0.62d 2. (30) 

It must be remembered that this is the linear density 
of only the part of the string that is fully covered. 

There are two windings on the core of some of these 
strings so that the copper may be packed somewhat 
fighter than for a single winding; but the above formula 
agrees with direct measurements of •. 

A section of the A'"' string was cut and weighed and 
• was found to be 2.086. For this string, the outer diam- 
eter is 0.617 cm and the core diameter is 0.141 cm. 
Equation (30) then gives •= 2.083. 

Similarly, for the G"' string, the value of • was 
measured to be 0.860. The values of D and d were meas- 
ured to 0.395 cm and 0.125 cm, so Eq. (30) gives the 
value of 0.860. This close agreement indicates that Eq. 
(30) should give fairly accurate values for the linear 
density. 

Calculation of B for Wrapped Strings 

If we assume that the restoring elastic torque is all 
due to the steel core, then Q= 19.5X 1011, S=•r•/4, and 
K=d/4, where all of these quantities refer to the steel 
core. If D is the outer diameter, then the linear density 
• is given approximately by •= 5.5D •. If it is assumed 
that the windings extend the entire length l of the core, 
and that the torque is 7% greater than that produced 
by the core, then Eq. (28) becomes 

B= 4.6X 10•ø(dVD¾o•l•). (28c) 

Since the windings do not cover the entire length of 
the core, there are two lengths l and l• for those wires 
having one winding, and three lengths l, ll, and l• for 
those having two windings. There must be a reflection 
of the wave on the wire at the places where each wind- 
ing stops. Consequently, we would expect three funda- 
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mental modes with the corresponding frequencies close 
together. Measurement of the partials of these itrings 
show that there are many weak partials besides those 
accounted for by Eq. (24b). In this paper, no attempt 
is made to account for all these partials, but only the 
most prominent ones. These can be calculated approxi- 
mately by Eq. (28c) if l is taken as the distance between 
where the outside winding starts and where it ends. 

The dimensions of the bass strings in this piano are 
given in Table V. The value of l is taken as the value of 
12 for the first ten strings and as the value of l• in the 
other bass strings. Then the calculated values of B 
from Eq. (28c) are shown by the curve in Fig. 1. It is 
seen that there is fair agreement between the observed 
B and that calculated by (28c). 

TABLE V. Dimensions of wound strings in Hamilton upright 
piano (new model). 

Key No. 

1 27.5 0.140 0.600 121.6 118.1 
2 29.1 0.140 0.585 120.6 117.1 
3 30.9 0.140 0.550 119.6 115.8 
4 32.7 0.135 0.521 118.6 114.8 
5 34.6 0.135 0.500 117.6 113.8 
6 36.7 0.130 0.470 116.6 112.8 
7 38.9 0.130 0.449 115.6 111.8 
8 41.2 0.130 0.432 114.6 110.8 
9 43.7 0.130 0.413 113.3 109.7 

10 46.3 0.130 0.397 112.5 108.7 
11 49.0 0.114 0.345 111.5 107.7 
12 51.9 0.114 0.332 110.5 106.7 
13 55.0 0.104 0.318 109.5 105.7 
14 58.3 0.104 0.305 108.5 104.7 
15 61.7 0.104 0.295 107.5 103.7 
16 65.4 0.102 0.285 106.5 102.7 
17 69.3 0.102 0.271 105.4 101.6 
18 73.4 0.102 0.261 104.4 100.6 
19 77.8 0.102 0.256 103.4 99.6 
20 82.4 0.099 0.247 102.4 98.6 
21 87.3 0.099 0.236 101.4 97.6 
22 92.5 0.099 0.223 100.4 96.6 
23 98.0 0.099 0.207 99.3 95.5 
24 103.8 0.094 0.191 98.3 94.5 
25 110.0 0.094 0.179 97.3 93.5 
26 116.5 0.094 0.174 96.3 92.5 
27 123.5 0.094 0.171 95.3 91.5 
28 130.8 0.094 0.166 94.3 90.5 
29 138.6 0.094 0.156 91.6 86.2 
30 146.8 0.094 0.150 88.6 82.6 
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TAm;E VI. Comparison of calculated and observed values of 
partial frequencies. 

String No. 23 String No. 54 
n Calc Obs Calc Obs 

1 97.3 ß ß ß 581.5 ß ß ß 
2 194.6 ß ß ß 1163.3 ß ß ß 
3 292.1 1449.5 
4 389.6 •.5 2338.5 2•.5 
5 487.2 487.9 2932.0 2932.0 
6 584.1 583.6 3532.0 3532.0 
7 683.1 4139.0 4138.0 
8 78,. 7ss.0 7ss.0 
9 880.0 879.5 5381.0 5377.0 

10 978.8 976.4 6013.0 6010.0 
11 1078.0 1076.0 6661.0 6654.0 
12 1178.0 1176.0 
13 1277.0 1276.0 
14 1378.0 1377.0 
15 1479.0 1478.0 
16 1591.0 1581.0 
17 1683.0 1682.0 
18 1686.0 1682.0 
19 1786.0 1782.0 
20 1889.0 1889.0 

To show how close the calculated values of the fre- 

quencies agree with those observed using the values of 
B in Fig. 1, a table of observed and calculated values is 
given in Table VI for string No. 23 and No. 54. 

It is concluded that for the usual piano strings, such 
as are used in the Hamilton piano, Eq. (28) gives an 
accurate value of B for solid strings, and that the fre- 
quencies of the partials can be calculated from Eq. (24b). 
For the wound strings, Eq. (28c) gives a good approxi- 
mation for B and also Eq. (24b) gives the partial fre- 
quencies. As indicated in our paper, •2 the excellence of 
the tone from a piano can not be said to be greater or 
less as the value of B becomes greater or less. There 
must be an optimum value of B for each string and this 
value has not yet been found. It is certainly not B--O, 
which would mean that all the partials should be 
harmonic. 
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